Daniel B. Szyld

Temple University Logo

Daniel B. Szyld

  • College of Science and Technology

    • Mathematics

      • Professor

Courses Taught

Number

Name

Level

MATH 2101

Linear Algebra

Undergraduate

MATH 8013

Numerical Linear Algebra I

Graduate

MATH 8014

Numerical Linear Algebra II

Graduate

MATH 8107

Mathematical Modeling for Science, Engineering, and Industry

Graduate

Selected Publications

Recent

  • Chu, E., Szyld, D., & Zhou, J. (2021). Numerical solution of singular Lyapunov equations. Numerical Linear Algebra with Applications, 28(5). doi: 10.1002/nla.2381.

  • Chow, E., Frommer, A., & Szyld, D. (2021). Asynchronous Richardson iterations: theory and practice. Numerical Algorithms, 87(4), 1635-1651. doi: 10.1007/s11075-020-01023-3.

  • Glusa, C., Boman, E., Chow, E., Rajamanickam, S., & Szyld, D. (2020). Scalable asynchronous domain decomposition solvers. SIAM Journal on Scientific Computing, 42(6), C384-C409. doi: 10.1137/19M1291303.

  • Haddad, M.E., Garay, J., Magoulès, F., & Szyld, D. (2020). Synchronous and asynchronous optimized Schwarz methods for one-way subdivision of bounded domains. Numerical Linear Algebra with Applications, 27(2). doi: 10.1002/nla.2279.

  • Frommer, A., Lund, K., & Szyld, D. (2020). Block krylov subspace methods for functions of Matrices II: Modified block FOM. SIAM Journal on Matrix Analysis and Applications, 41(2), 804-837. doi: 10.1137/19M1255847.

  • Han, E., Zhao, L., Ha, N.V., Hsieh, S., Szyld, D., & Jaeger, H. (2019). Dynamic jamming of dense suspensions under tilted impact. Physical Review Fluids, 4(6). doi: 10.1103/PhysRevFluids.4.063304.

  • Kehl, R., Nabben, R., & Szyld, D. (2019). Adaptive multilevel Krylov methods. Electronic Transactions on Numerical Analysis, 51, 512-528. doi: 10.1553/etna_vol51s512.

  • Echeverría, C., Liesen, J., Szyld, D., & Tichý, P. (2018). Convergence of the multiplicative schwarz method for singularly perturbed convection-diffusion problems discretized on a Shishkin mesh. Electronic Transactions on Numerical Analysis, 48, 40-62. doi: 10.1553/etna_vol48s40.

  • Garay, J., Magoulès, F., & Szyld, D. (2018). Optimized schwarz method for poisson’s equation in rectangular domains. In Lecture Notes in Computational Science and Engineering, 125 (pp. 533-541). doi: 10.1007/978-3-319-93873-8_51.

  • Garay, J., Magoulès, F., & Szyld, D. (2018). Convergence of asynchronous optimized schwarz methods in the plane. In Lecture Notes in Computational Science and Engineering, 125 (pp. 333-341). doi: 10.1007/978-3-319-93873-8_31.

  • Brenner, S., Cai, X., Gander, M.J., Klawonn, A., Sarkis, M., & Szyld, D.B. (2022). Dedicated to Olof B. Widlund on the occasion of his 80th birthday. ELECTRONIC TRANSACTIONS on NUMERICAL ANALYSIS, 49, VII-VIII. Retrieved from http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000459295800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=abcd71df5a6dac31fd219478b0a9c638.

  • Magoulès, F., Szyld, D., & Venet, C. (2017). Asynchronous optimized Schwarz methods with and without overlap. Numerische Mathematik, 137(1), 199-227. doi: 10.1007/s00211-017-0872-z.

  • Greif, C., Rees, T., & Szyld, D. (2017). GMRES with multiple preconditioners. SeMA Journal, 74(2), 213-231. doi: 10.1007/s40324-016-0088-7.

  • Frommer, A., Lund, K., & Szyld, D. (2017). Block Krylov subspace methods for functions of matrices. Electronic Transactions on Numerical Analysis, 47, 100-126.

  • Ahmad, M., Szyld, D., & Gijzen, M.V. (2017). Preconditioned multishift bicg for h2-optimal model reduction. SIAM Journal on Matrix Analysis and Applications, 38(2), 401-424. doi: 10.1137/130914905.

  • Frommer, A., Lund, K., Schweitzer, M., & Szyld, D. (2017). The radau–lanczos method for matrix functions. SIAM Journal on Matrix Analysis and Applications, 38(3), 710-732. doi: 10.1137/16M1072565.

  • Bakhos, T., Kitanidis, P., Ladenheim, S., Saibaba, A., & Szyld, D. (2017). Multipreconditioned GMRES for shifted systems. SIAM Journal on Scientific Computing, 39(5), S222-S247. doi: 10.1137/16M1068694.