Irina Mitrea

Temple University Logo

Irina Mitrea

  • College of Science and Technology

    • Mathematics

      • Professor

      • Chair

Courses Taught

Number

Name

Level

Selected Publications

Recent

  • Mitrea, D., Mitrea, I., & Mitrea, M. (2021). Failure of Fredholm solvability for the Dirichlet problem corresponding to weakly elliptic systems. Analysis and Mathematical Physics, 11(2). doi: 10.1007/s13324-021-00521-4.

  • Hoepfner, G., Liboni, P., Mitrea, D., Mitrea, I., & Mitrea, M. (2021). MULTILAYER POTENTIALS FOR HIGHER-ORDER SYSTEMS IN ROUGH DOMAINS. Analysis and PDE, 14(4), 1233-1308. doi: 10.2140/apde.2021.14.1233.

  • Mitrea, D., Mitrea, I., & Mitrea, M. (2021). Compactness, or Lack Thereof, for the Harmonic Double Layer. In Operator Theory: Advances and Applications, 285 (pp. 329-355). doi: 10.1007/978-3-030-75425-9_17.

  • Mitrea, D., Mitrea, I., & Mitrea, M. (2020). A sharp divergence theorem with nontangential traces. Notices of the American Mathematical Society, 67(9), 1295-1305. doi: 10.1090/noti2149.

  • Mitrea, D., Mitrea, I., & Mitrea, M. (2020). The poisson integral formula for variable-coefficient elliptic systems in rough domains. Contemporary Mathematics, 748, 157-175. doi: 10.1090/conm/748/15059.

  • Martell, J., Mitrea, D., Mitrea, I., & Mitrea, M. (2020). Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space. St. Petersburg Mathematical Journal, 31(2), 189-222. doi: 10.1090/spmj/1592.

  • Martell, J., Mitrea, D., Mitrea, I., & Mitrea, M. (2019). The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO. Analysis and PDE, 12(3), 605-720. doi: 10.2140/apde.2019.12.605.

  • Marín, J., Martell, J., Mitrea, D., Mitrea, I., & Mitrea, M. (2019). A Fatou Theorem and Poisson’s Integral Representation Formula for Elliptic Systems in the Upper Half-Space. In Trends in Mathematics (pp. 105-124). doi: 10.1007/978-3-030-23854-4_5.

  • Mitrea, D., Mitrea, I., & Mitrea, M. (2019). The Dirichlet problem with VMO data in uppergraph Lipschitz domains. Atti Della Accademia Nazionale Dei Lincei, Classe Di Scienze Fisiche, Matematiche E Naturali, Rendiconti Lincei Matematica E Applicazioni, 30(4), 701-732. doi: 10.4171/RLM/868.

  • Marmolejo-Olea, E., Mitrea, I., Mitrea, D., & Mitrea, M. (2018). Radiation Conditions and Integral Representations for Clifford Algebra-Valued Null-Solutions of the Helmholtz Operator. Journal of Mathematical Sciences (United States), 231(3), 367-472. doi: 10.1007/s10958-018-3826-9.

  • Martell, J., Mitrea, D., Mitrea, I., & Mitrea, M. (2017). On the L p-Poisson Semigroup Associated with Elliptic Systems. Potential Analysis, 47(4), 401-445. doi: 10.1007/s11118-017-9620-3.

  • Mitrea, I., Ott, K., & Tucker, W. (2017). Invertibility Properties of Singular Integral Operators Associated with the Lamé and Stokes Systems on Infinite Sectors in Two Dimensions. Integral Equations and Operator Theory, 89(2), 151-207. doi: 10.1007/s00020-017-2396-4.

  • Marmolejo-Olea, E., Mitrea, D., Mitrea, I., & Mitrea, M. (2017). Hardy spaces of Clifford algebra-valued monogenic functions in exterior domains and a higher dimensional version of Cauchy’s vanishing theorem. Complex Variables and Elliptic Equations, 62(9), 1374-1392. doi: 10.1080/17476933.2016.1250915.

  • Awala, H., Mitrea, I., & Ott, K. (2017). On the solvability of the zaremba problem in infinite sectors and the invertibility of associated singular integral operators. doi: 10.1007/978-3-319-55556-0_10.