Biography
Research Interests: Geometry and topology of locally symmetric spaces; rank one geometry, especially hyperbolic and complex hyperbolic; lattices in Lie groups; connections between the above and low dimensional topology, algebraic geometry, and number theory.
Courses Taught
Number | Name | Level |
|---|---|---|
MATH 2043 | Calculus III | Undergraduate |
MATH 3101 | Topics in Modern Algebra | Undergraduate |
MATH 9072 | Differential Topology | Graduate |
Selected Publications
Recent
Stover, M. (2021). Cusp and b
1 growth for ball quotients and maps onto Z with finitely generated kernel. Indiana University Mathematics Journal, 70(1), 213-233. doi: 10.1512/iumj.2021.70.8191.Fisher, D., Lafont, J., Miller, N., & Stover, M. (2021). Finiteness of maximal geodesic submanifolds in hyperbolic hybrids. Journal of the European Mathematical Society, 23(11), 3591-3623. doi: 10.4171/JEMS/1077.
Stover, M. (2021). Geometry of the Wiman-Edge monodromy. Journal of Topology and Analysis. doi: 10.1142/S1793525321500503.
Chinburg, T. & Stover, M. (2020). Negative curves of small genus on surfaces. Mathematische Zeitschrift, 295(1-2), 309-330. doi: 10.1007/s00209-019-02363-0.
Cerbo, L.D. & Stover, M. (2019). Punctured spheres in complex hyperbolic surfaces and bielliptic ball quotient compactifications. Transactions of the American Mathematical Society, 372(7), 4627-4646. doi: 10.1090/tran/7650.
Linowitz, B., Stover, M., & Voight, J. (2019). Correction to: Commensurability classes of fake quadrics (Selecta Mathematica, (2019), 25, 3, (48), 10.1007/s00029-019-0492-9). Selecta Mathematica, New Series, 25(4). doi: 10.1007/s00029-019-0502-y.
Linowitz, B., Stover, M., & Voight, J. (2019). Commensurability classes of fake quadrics. Selecta Mathematica, New Series, 25(3). doi: 10.1007/s00029-019-0492-9.
Canary, R., Stover, M., & Tsouvalas, K. (2019). New nonlinear hyperbolic groups. Bulletin of the London Mathematical Society, 51(3), 547-553. doi: 10.1112/blms.12248.
Stover, M. (2019). On general type surfaces with q= 1 and c
2 = 3 pg . Manuscripta Mathematica, 159(1-2), 171-182. doi: 10.1007/s00229-018-1035-y.Stover, M. (2019). Lattices in PU(n, 1) that are not profinitely rigid. Proceedings of the American Mathematical Society, 147(12), 5055-5062. doi: 10.1090/proc/14763.
Richey, J., Shutty, N., & Stover, M. (2018). Explicit Bounds from the Alon–Boppana Theorem. Experimental Mathematics, 27(4), 444-453. doi: 10.1080/10586458.2017.1311813.
Fisher, D., Larsen, M., Spatzier, R., & Stover, M. (2018). Character varieties and actions on products of trees. Israel Journal of Mathematics, 225(2), 889-907. doi: 10.1007/s11856-018-1683-3.
Cerbo, L.D. & Stover, M. (2018). Classification and arithmeticity of toroidal compactifications with 3c
2 =c-21 = 3. Geometry and Topology, 22(4), 2465-2510. doi: 10.2140/gt.2018.22.2465.Chinburg, T. & Stover, M. (2018). Geodesic curves on Shimura surfaces. Topology Proceedings, 52, 113-121.
McReynolds, D., Meyer, J., & Stover, M. (2017). Constructing geometrically equivalent hyperbolic orbifolds. Algebraic and Geometric Topology, 17(2), 831-846. doi: 10.2140/agt.2017.17.831.
Canary, R., Lee, M., Stover, M., & Sambarino, A. (2017). Amalgam anosov representations. Geometry and Topology, 21(1), 215-251. doi: 10.2140/gt.2017.21.215.
Cerbo, L.D. & Stover, M. (2017). Bielliptic ball quotient compactifications and lattices in PU(2, 1) with finitely generated commutator subgroup. Annales De L'Institut Fourier, 67(1), 315-328. doi: 10.5802/aif.3083.