Matthew Stover

Temple University Logo

Matthew Stover

  • College of Science and Technology

    • Mathematics

      • Associate Professor

Biography

Research Interests: Geometry and topology of locally symmetric spaces; rank one geometry, especially hyperbolic and complex hyperbolic; lattices in Lie groups; connections between the above and low dimensional topology, algebraic geometry, and number theory.

Courses Taught

Number

Name

Level

MATH 2043

Calculus III

Undergraduate

MATH 3101

Topics in Modern Algebra

Undergraduate

MATH 9072

Differential Topology 

Graduate

Selected Publications

Recent

  • Stover, M. (2021). Cusp and b1 growth for ball quotients and maps onto Z with finitely generated kernel. Indiana University Mathematics Journal, 70(1), 213-233. doi: 10.1512/iumj.2021.70.8191.

  • Fisher, D., Lafont, J., Miller, N., & Stover, M. (2021). Finiteness of maximal geodesic submanifolds in hyperbolic hybrids. Journal of the European Mathematical Society, 23(11), 3591-3623. doi: 10.4171/JEMS/1077.

  • Stover, M. (2021). Geometry of the Wiman-Edge monodromy. Journal of Topology and Analysis. doi: 10.1142/S1793525321500503.

  • Chinburg, T. & Stover, M. (2020). Negative curves of small genus on surfaces. Mathematische Zeitschrift, 295(1-2), 309-330. doi: 10.1007/s00209-019-02363-0.

  • Cerbo, L.D. & Stover, M. (2019). Punctured spheres in complex hyperbolic surfaces and bielliptic ball quotient compactifications. Transactions of the American Mathematical Society, 372(7), 4627-4646. doi: 10.1090/tran/7650.

  • Linowitz, B., Stover, M., & Voight, J. (2019). Correction to: Commensurability classes of fake quadrics (Selecta Mathematica, (2019), 25, 3, (48), 10.1007/s00029-019-0492-9). Selecta Mathematica, New Series, 25(4). doi: 10.1007/s00029-019-0502-y.

  • Linowitz, B., Stover, M., & Voight, J. (2019). Commensurability classes of fake quadrics. Selecta Mathematica, New Series, 25(3). doi: 10.1007/s00029-019-0492-9.

  • Canary, R., Stover, M., & Tsouvalas, K. (2019). New nonlinear hyperbolic groups. Bulletin of the London Mathematical Society, 51(3), 547-553. doi: 10.1112/blms.12248.

  • Stover, M. (2019). On general type surfaces with q= 1 and c 2 = 3 p g. Manuscripta Mathematica, 159(1-2), 171-182. doi: 10.1007/s00229-018-1035-y.

  • Stover, M. (2019). Lattices in PU(n, 1) that are not profinitely rigid. Proceedings of the American Mathematical Society, 147(12), 5055-5062. doi: 10.1090/proc/14763.

  • Richey, J., Shutty, N., & Stover, M. (2018). Explicit Bounds from the Alon–Boppana Theorem. Experimental Mathematics, 27(4), 444-453. doi: 10.1080/10586458.2017.1311813.

  • Fisher, D., Larsen, M., Spatzier, R., & Stover, M. (2018). Character varieties and actions on products of trees. Israel Journal of Mathematics, 225(2), 889-907. doi: 10.1007/s11856-018-1683-3.

  • Cerbo, L.D. & Stover, M. (2018). Classification and arithmeticity of toroidal compactifications with 3c2=c-21= 3. Geometry and Topology, 22(4), 2465-2510. doi: 10.2140/gt.2018.22.2465.

  • Chinburg, T. & Stover, M. (2018). Geodesic curves on Shimura surfaces. Topology Proceedings, 52, 113-121.

  • McReynolds, D., Meyer, J., & Stover, M. (2017). Constructing geometrically equivalent hyperbolic orbifolds. Algebraic and Geometric Topology, 17(2), 831-846. doi: 10.2140/agt.2017.17.831.

  • Canary, R., Lee, M., Stover, M., & Sambarino, A. (2017). Amalgam anosov representations. Geometry and Topology, 21(1), 215-251. doi: 10.2140/gt.2017.21.215.

  • Cerbo, L.D. & Stover, M. (2017). Bielliptic ball quotient compactifications and lattices in PU(2, 1) with finitely generated commutator subgroup. Annales De L'Institut Fourier, 67(1), 315-328. doi: 10.5802/aif.3083.