Biography
Dr. Dong’s research focuses on sufficient dimension reduction and high-dimensional data analysis. His research articles have been published in top-tier journals such as Annals of Statistics, JASA and Biometrika. His proposal "New Developments in Sufficient Dimension Reduction" has been funded by National Science Foundation.
Research Interests
- Sufficient dimension reduction
- High-dimensional inference
- Machine learning and data mining
Courses Taught
Number | Name | Level |
|---|---|---|
STAT 2521 | Data Analysis and Statistical Computing | Undergraduate |
STAT 3502 | Regression and Predictive Analytics | Undergraduate |
BA 9814 | Advanced Quantitative Research Methods | Graduate |
STAT 8108 | Applied Multivariate Analysis I | Graduate |
Selected Publications
Recent
Dong, Y. Real-time sufficient dimension reduction through principal least-squares support-vector machines. Virtual.
Soale, A. & Dong, Y. (2021). On expectile-assisted inverse regression estimation for sufficient dimension reduction. Journal of Statistical Planning and Inference, 213, 80-92. doi: 10.1016/j.jspi.2020.11.004.
Power, M. & Dong, Y. (2021). Bayesian model averaging sliced inverse regression. Statistics and Probability Letters, 174. doi: 10.1016/j.spl.2021.109103.
Artemiou, A., Dong, Y., & Shin, S. (2021). Real-time sufficient dimension reduction through principal least squares support vector machines. Pattern Recognition, 112. doi: 10.1016/j.patcog.2020.107768.
Dong, Y. (2021). A brief review of linear sufficient dimension reduction through optimization. Journal of Statistical Planning and Inference, 211, 154-161. doi: 10.1016/j.jspi.2020.06.006.
Dong, Y. (2021). Sufficient Dimension Reduction Through Independence and Conditional Mean Independence Measures. In Festschrift in Honor of R. Dennis Cook (pp. 167-180). doi: 10.1007/978-3-030-69009-0_8.
Li, Z. & Dong, Y. (2021). Model-Free Variable Selection With Matrix-Valued Predictors. Journal of Computational and Graphical Statistics, 30(1), 171-181. doi: 10.1080/10618600.2020.1806854.
Dong, Y. Model-free variable selection with matrix-valued predictors.
Dong, Y., Yu, Z., & Zhu, L. Model-free variable selection for conditional mean in regression. Computational Statistics & Data Analysis, 152, 107042-107042. Elsevier BV. doi: 10.1016/j.csda.2020.107042.
Dong, Y. A review of sufficient dimension reduction.
Dong, Y. Model-free variable selection with matrix-valued predictors.
Shen, C., Chen, L., Dong, Y., & Priebe, C. (2020). Sparse Representation Classification beyond ℓ1 Minimization and the Subspace Assumption. IEEE Transactions on Information Theory, 66(8), 5061-5071. doi: 10.1109/TIT.2020.2981309.
Power, M. & Dong, Y. (2020). Comment on ‘Review of sparse sufficient dimension reduction’. Statistical Theory and Related Fields. doi: 10.1080/24754269.2020.1829394.
Tang, C., Fang, E., & Dong, Y. (2020). High-dimensional interactions detection with sparse principal hessian matrix. Journal of Machine Learning Research, 21.
Dong, Y. On dual model-free variable selection with two groups of variable. Grand Rapids, MI.
Dong, Y. On dual model-free variable selection with two groups of variables. Gainesville, FL.
Dong, Y. On dual model-free variable selection with two groups of variables. Denver, CO.
Dong, Y., Xia, Q., Tang, C., & Li, Z. (2018). On sufficient dimension reduction with missing responses through estimating equations. Computational Statistics and Data Analysis, 126, 67-77. doi: 10.1016/j.csda.2018.04.006.
Dong, Y., Alothman, A., & Artemiou, A. (2018). On dual model-free variable selection with two groups of variables. Journal of Multivariate Analysis, 167, 366-377. Elsevier Inc..
Dong, Y. & Zhang, Y. (2018). On a new class of sufficient dimension reduction estimators. Statistics and Probability Letters, 139, 90-94. doi: 10.1016/j.spl.2018.03.019.
Babb, P., Zhang, L., Allin, P., Wallgren, A., Wallgren, B., Blunt, G., Garrett, A., Murtagh, F., Smith, P.W., Elliott, D., Nason, G., Powell, B., Moore, J.C., Durrant, G.B., Smith, P.W., Smith, P.A., Chambers, R.L., Herzberg, A.M., Pilling, M., Appleby, W., Barnett, A., Bhansali, R., Bharadwaj, N., Dong, Y., Brakel, J.v.d., Budd, L., Doidge, J., Gilbert, R., Francis, B., Frisoli, K., Nugent, R., Perez, F.J.G., Lara, L., Porcu, E., Henry, S., Hunt, I., Ieva, F., Gasperoni, F., Jansson, I., Kumar, K., Longford, N., Manninen, A., Mateu, J., McNicholas, P.D., McNicholas, S.M., Tait, P.A., Mehew, J., Oberski, D.L., Ruiz, M., Yohai, V.J., Zamar, R., Stehlik, M., Stehlikova, S., Soza, L.N., Towers, J., & Wijayatunga, P. Statistical challenges of administrative and transaction data. JOURNAL of the ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS in SOCIETY, 181(3), 578-605. Retrieved from http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000434143700002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=abcd71df5a6dac31fd219478b0a9c638.
Dong, Y. & Li, Z. (2018). On sliced inverse regression with missing values. Journal of Nonparametric Statistics. doi: 10.1080/10485252.2018.1508677.
Bharadwaj, N., Noble, C., Tower, A., Smith, L., & Dong, Y. (2017). Predicting Innovation Success in the Motion Picture Industry: The Influence of Multiple Quality Signals. Journal of Product Innovation Management, 34(5), 659-680. doi: 10.1111/jpim.12404.
Xia, Q. & Dong, Y. On a new hybrid estimator for the central mean space. Journal of Systems Science and Complexity, 30(1), 111-121. Springer Science and Business Media LLC. doi: 10.1007/s11424-017-6227-0.
Dong, Y., Kai, B., & Yu, Z. (2017). Dimension reduction via local rank regression. Journal of Statistical Computation and Simulation, 87(2), 239-249. doi: 10.1080/00949655.2016.1205067.